Macular Telangiectasia Type 2 (MacTel) Disease State June 2025

Table of Contents

MacTel: Overview and Epidemiology

MacTel 2: Disease Diagnosis

Pathogenesis

Impact on Patients

Three Types of Macular Telangiectasia (MacTel)

MacTel 1: Aneurysmal Telangiectasia

- Unilateral, progressive ocular disease that leads to vision loss^{1,2}
- Defined by aneurysmatic dilation of blood vessels in the temporal region of the macula²
- Characterized by decreased deep capillary plexus density, macular edema, and ellipsoidzone layer disruption³
- Neovascularization is not present¹

MacTel 2: Perifoveal Telangiectasia

- Bilateral, progressive, retinal neurodegenerative disease^{2,4}
- Characterized as nonproliferative or proliferative^{1,4}
 - Nonproliferative stages: inner retinal thickening and cysts, loss of retinal transparency, and foveal involvement⁴
 - Proliferative stages:
 presence of telangiectatic
 vessels and subretinal
 vascular complex⁴

MacTel 3: Occlusive Telangiectasia

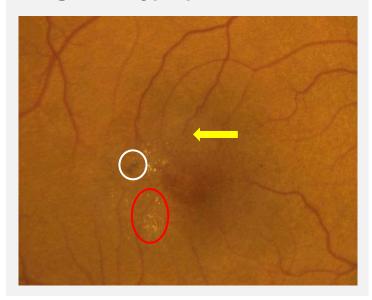
- Rare ocular disease¹
- Characterized by the presence of perifoveal capillary nonperfusion¹
- Appears to be driven by systemic or cerebral diseases¹
- Shares clinical features with cerebroretinal vasculopathy⁵

^{1.} Yannuzzi LA, et al. Arch Ophthalmol. 2006;124(4):450-460. 2. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 3. Guo J, et al. BMC Ophthalmol. 2018;18(1):69. 4. Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309. 5. Seraly MP, et al. Am J Ophthalmol Case Rep. 2020;20:100985.

MacTel 2: Neurodegenerative Retinal Disease Associated With Central Vision Impairment¹

MacTel 2 is a **neurodegenerative retinal disease** that leads to **vision loss**; it may start in one eye, but it almost always affects **both eyes**¹

Photoreceptor loss occurs in MacTel 2 and leads to central vision loss and functional impairment^{1,2}


Patients experience substantial burden of illness due to loss of visual acuity, including visual field defects and **impaired reading and driving ability**²⁻⁴

No curative or disease-altering treatments currently exist^{1,2}


^{1.} Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309. 2. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 3. Heeren TFC, et al. Retina. 2014;34(5):916. 4. Bronstad PM, et al. JAMA Ophthalmol. 2013;131(3):303-309.

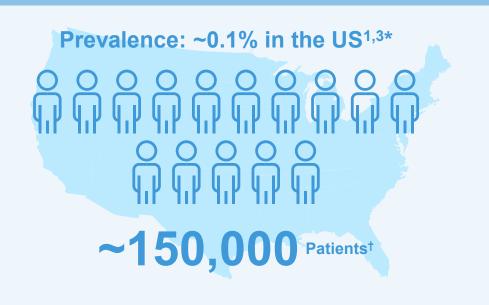
MacTel 2 Results in Changes to the Retina^{1,2}

Microvascular Abnormalities
(arrow), Crystals (red circle),
Pigment Hyperplasia (white circle)

Cavitary Lesion on OCT
(arrow)

Luteal Pigment
Loss on AF
(red circle)

These early changes seen in OCT and AF are often misdiagnosed as lamellar holes, vitreomacular traction, or cysts, contributing to the underdiagnosis of MacTel 2


AF, autofluorescence; OCT, optical coherence tomography. Images provided by Dr. Thomas Aaberg.

1. Kedarisetti KC, et al. *Clin Ophthalmol*. 2022;16:3297-3309. 2. Charbel Issa P, et al. *Prog Retin Eye Res*. 2013;34:49-77.

MacTel 2 is Underdiagnosed, With an Estimated Prevalence of 0.1% in the US^{1*}

Incidence: ~0.8/100,000 persons/year^{2,3}

~2,700 new cases/year[†]

Patients are diagnosed in mid-late decades

Symptoms appear around age **40–50 years**⁴

Mean age of diagnosis is **57 years**⁵

Approximately 2% of MacTel patients are under age 40 years⁶

Patient population may be underestimated

Underdiagnosis and misdiagnosis of MacTel contributes to the potentially underestimated patient numbers⁴

^{*}Among patients aged 43–86 years; based on Beaver Dam, Wisconsin. †Calculation performed using the US 2020 population (331,449,281).³

1. Klein R, et al. Am J Ophthalmol. 2010;150(1):55-62.e2. 2. Starr MR, et al. Ophthalmic Surg Lasers Imaging Retina. 2020;51(5):S35-S42. 3. United States Census Bureau. "Populations and People." Accessed Jan 2024. 4. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 5. Clemons TE, et al. Ophthalmic Epidemiol. 2010;17(1):66-73. 6. Reddy NG, et al., Int J Retina Vitreous. 2023;9(1):47.

Risk Factors Associated With MacTel 2

MacTel 2 has a slightly increased prevalence in women^{1,2}

MacTel 2 has a possible genetic component²

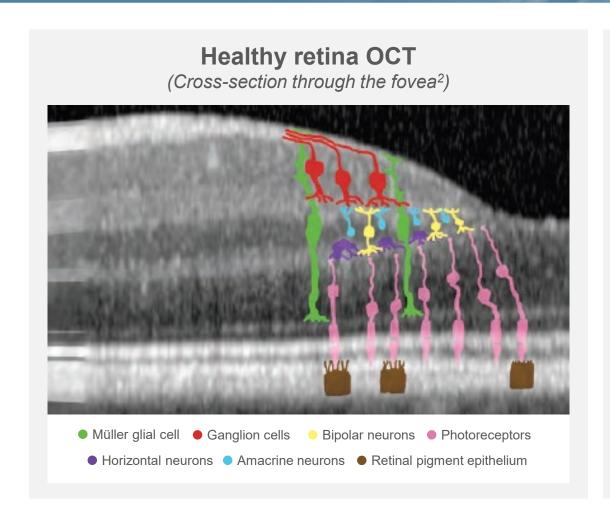
Although no inheritance pattern has been found for MacTel, it has been observed in familial clusters and among monozygotic twins

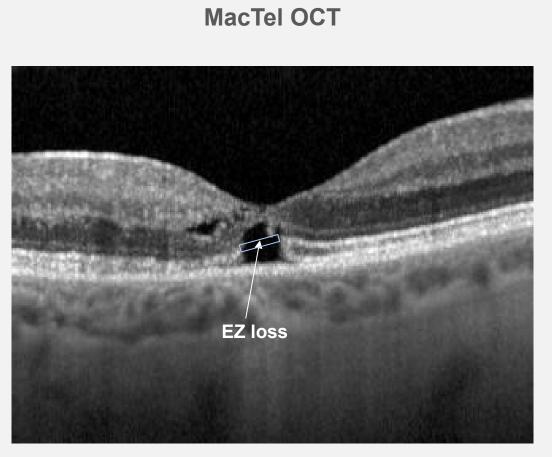
Risk loci for MacTel 2 have been identified across the genome

Certain systemic conditions are commonly seen in patients with MacTel 2¹⁻³

Hypertension or prehypertension

Diabetes mellitus or impaired fasting glucose



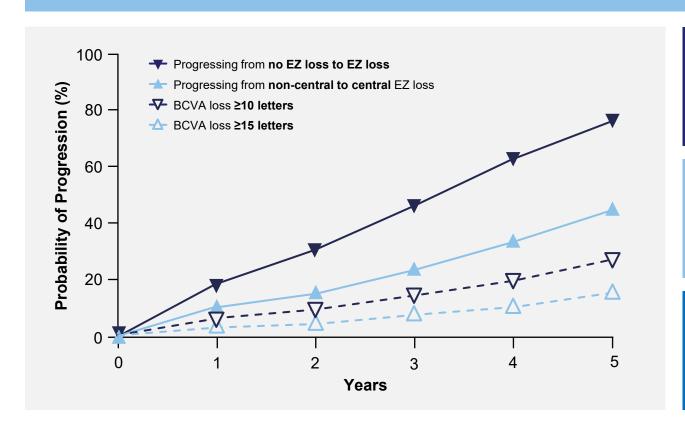

Being a current or former smoker may increase the risk of MacTel 2^{1,2}

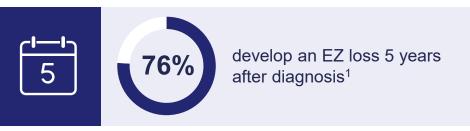
^{1.} Clemons TE, et al. Ophthalmic Epidemiol. 2010;17(1):66-73. 2. Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309. 3. Reddy NG, et al., Int J Retina Vitreous. 2023;9(1):47.

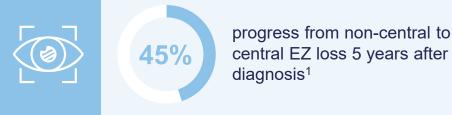
Photoreceptor Loss in MacTel 2 Leads to Functional Vision Loss¹

EZ, ellipsoid zone; OCT, optical coherence tomography. Image on left reprinted with permission from Neal Adams, M.D., under a license agreement. Image on right provided by Dr. Thomas Aaberg. 1. Heeren TFC, et al, Ophthalmology. 2020;127(11):1539-1548. 2. Adams NA. Atlas of OCT. Franklin, MA, USA: Heidelberg Engineering; 2024.

Size and Rate of Enlargement of EZ Loss in MacTel 2


In healthy eyes, the mean area ± SD of superficial foveal avascular zone was 0.27 ± 0.101 mm² based on OCT-A¹




In studies of MacTel 2, baseline **EZ loss area has been ~0.5–0.6 mm**², with a **rate of change of ~0.08 mm**² **per year**^{2,3}

Most MacTel 2 Patients Develop EZ Loss With a Subsequent Impact on Vision¹

Based on findings from the MacTel Natural History Study (N=507)¹

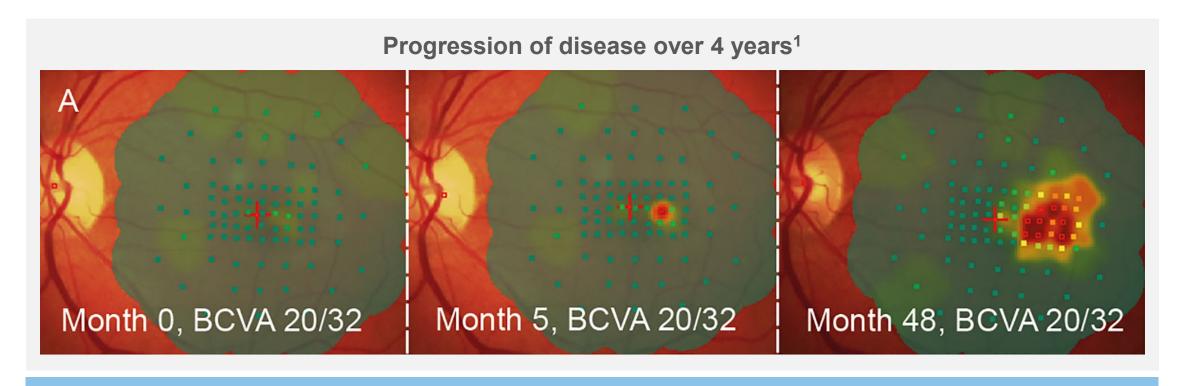


BCVA, best corrected visual acuity; EZ, ellipsoid zone.

^{1.} Peto T, et al. Retina. 2018;38(Suppl 1):S8-S13. 2. Chew EY, et al. Ophthalmol Sci. 2023;3(2):100261.

BCVA Over Time May Not Adequately Capture MacTel 2 Progression or Visual Function¹

Small area of EZ loss; fovea spared

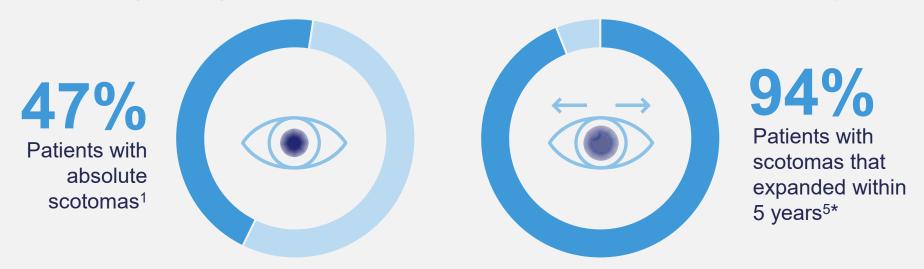

20/30 BCVA with minimal symptoms

20/30 BCVA, complains of difficult reading

Expanding EZ loss; fovea surrounded 20/40 BCVA, complains of missing vision

BCVA, best corrected visual acuity; EZ, ellipsoid zone; SD-OCT, spectral domain optical coherence tomography. Images provided by Dr. Thomas Aaberg. 1. Pauleikhoff D, et al. Acta Ophthalmol. 2019;97(7):e998-e1005.

BCVA Often Does Not Reflect Disease Burden^{1,2}


These microperimetry images mapping areas of photoreceptor loss demonstrate the development and subsequent expansion of a scotoma in a MacTel patient, yet visual acuity remains stable 1-3

BCVA, best correlated visual acuity. Images reprinted with permission under a license agreement with Copyright Clearance Center on behalf of Association for Research in Vision & Ophthalmology. 1. Heeren TFC, et al. *Invest Ophthalmol Vis Sci.* 2015;56(6):3905-3912. 2. Charbel Issa P, et al. *Invest Ophthalmol Vis Sci.* 2007;48:3788-3795. 3. Heeren TFC, et al. *Ophthalmology*. 2020;127:1539-1548.

Irreversible Vision Loss and Compromised Visual Function^{1,2}

Patients with a scotoma have a mean BCVA of 20/633

Scotomas, or visual field defects, force patients to compensate with small eye movements, resulting in delayed reactions and other impairments not reflected in visual acuity⁴

^{*}Those with an initial scotoma had an average growth rate of 1.3 new test points with an absolute scotoma per year.⁴ BCVA, best correlated visual acuity.

^{1.} Vujosevic S, et al. Retina. 2018;38(Suppl 1):S14-S19. 2. Dalkara D, et al. Hum Gene Ther. 2016;27(2):134-147. 3. Finger RP, et al. Invest Ophthalmol Vis Sci. 2009;50(3):1366-1370. 4. Bronstad PM, et al. JAMA Ophthalmol. 2013;131(3):303-309. 5. Heeren TFC, et al. Invest Ophthalmol Vis Sci. 2015;56(6):3905-3912.

Misdiagnoses or Diagnostic Delays Due to the Similarity of MacTel 2 to Other Ocular Conditions^{1,2}

MacTel may be misdiagnosed as the following retinal diseases^{1,2}:

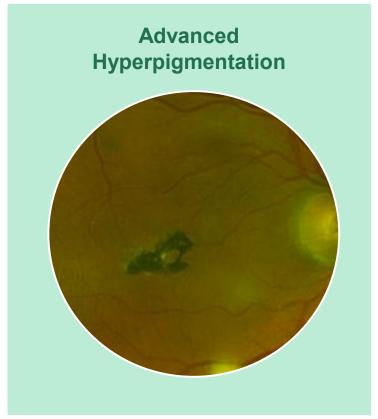
Diabetic retinopathy/ macular edema

Retinal vein occlusion

Retinal dystrophies

Age-related macular degeneration

MacTel is difficult to diagnose due to^{3,4}:


Asymptomatic onset initially

Subtle early clinical findings

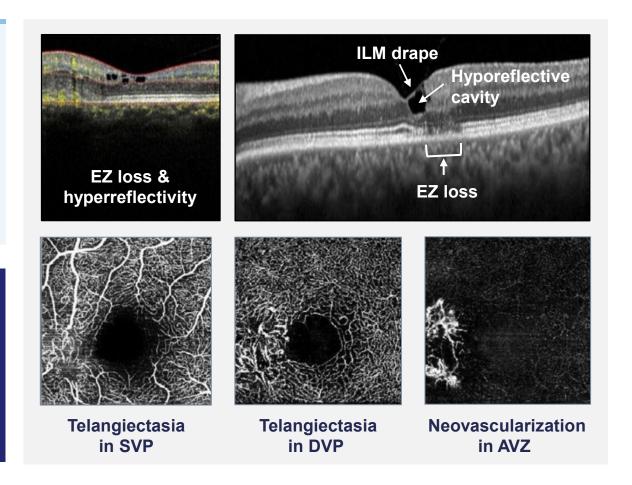
^{1.} Clemons TE, et al., Ophthalmic Epidemiol. 2010;17(1):66-73. 2. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 3. Nicolai H, et al., BMJ Case Rep. 2014;2014:bcr2014204802. 4. Reddy NG, et al. Int J Retina Vitreous. 2023;9(1):47.

Fundus Changes Can Be Subtle in Early MacTel 21

Images provided by Dr. Thomas Aaberg.

1. Charbel Issa P, et al. *Prog Retin Eye Res.* 2013;34:49-77.

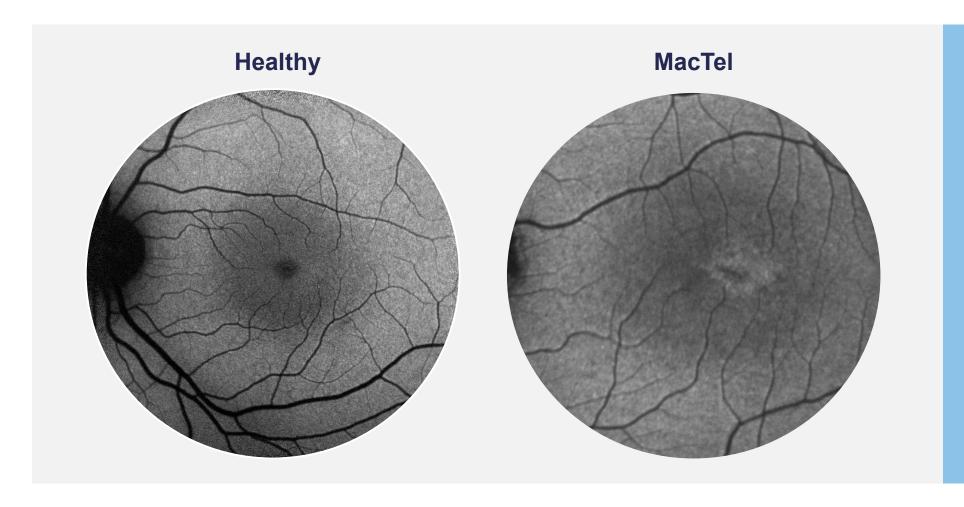
OCT and OCT-A Can Aid in Making a MacTel 2 Diagnosis and Monitoring for Neovascularization^{1,2}


Common OCT findings^{1,2}:

Disruption/loss of EZ

Hyporeflective cavities in the inner and outer neurosensory retina

ILM drape


OCT-A shows retinal and choroidal vasculature in high resolution without the need for intravenous dye^{1,3}

AVZ, avascular zone; DVP, deep vascular plexus; EZ, ellipsoid zone; ILM, internal limiting membrane; OCT, optical coherence tomography; OCT-A, optical coherence tomography angiography; SVP, superficial vascular plexus. Images provided by Dr. Thomas Aaberg.

^{1.} Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309. 2. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 3. AAO What is Macular Telangiectasia? 2023 Available: https://www.aao.org/eye-health/diseases/macular-telangiectasia#:~:text=Published%20Sep..vision%20for%20activities%20like%20reading. Accessed Nov 2024.

FAF Can Detect the Earliest Stages of MacTel 21-3

Macular
pigment loss
in eyes with
MacTel is
associated
with increased
autofluorescence²

FAF, fundus autofluorescence. Images provided by Dr. Thomas Aaberg.

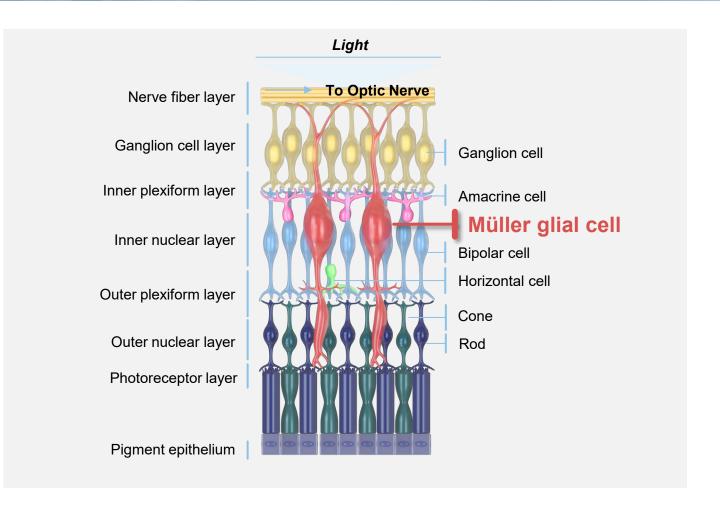
1. Gillies MC, et al. Ophthalmology. 2009;116(12):2422-2429. 2. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 3. Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309.

FA Has Been Considered the Gold Standard for MacTel 2 Diagnosis¹

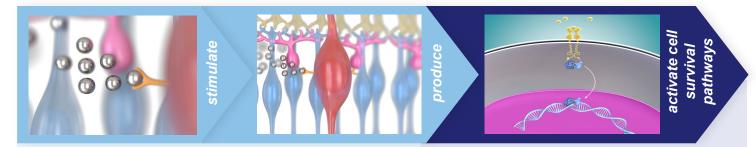
Early phase showing telangiectatic vessels

Late phase showing leakage from telangiectatic vessels

Leakage of dye is one of the earliest signs of MacTel²


FA, fluorescein angiography. Images provided by Dr. Thomas Aaberg.

^{1.} Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 2. Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309.

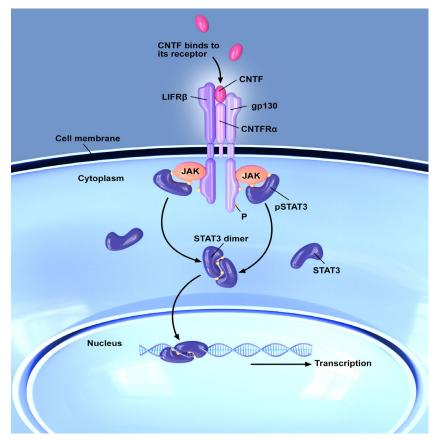

Irreversible Vision Impairment With Müller Glial Cell Dysfunction¹

- Müller glial cells are the most common glial cell type in the human retina, providing structural and neurotrophic support²
- In MacTel, Müller glial cells experience apoptosis, which results in retinal neurodegenerative effects^{1,3}
- Müller glial cell dysfunction and apoptosis lead to macular photoreceptor and ganglion cell loss, causing impaired central and sharp vision in affected patients^{1,4,5}

^{1.} Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309 2. Kobat SG, Turgut B. Beyoglu Eye J. 2020;5(2):59-63. 3. Powner MB, et al. Ophthalmology. 2013;120(11):2344-2352. 4. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 5. Muller S, et al. Ophthalmologica 2019;241(3):121-129.

CNTF Is Key to Protecting Retinal Neurons^{1,2}

CNTF (ciliary neurotrophic factor)


Müller glial cell

- CNTF binds to CNTF receptors on Müller glial cells, activating the JAK-STAT pathway^{1,3}
 - Prompts production of growth factors and neuroprotective factors, including CNTF¹

Neuroprotective factors, including CNTF

- Neuroprotective factors provide structural/ neuroprotective support by activating cell survival pathways^{3,4}
- Müller glial cell dysfunction and apoptosis impede production and effectiveness of neuroprotective factors³

Enabling macular photoreceptor protection^{1,2}

CNTF, ciliary neurotrophic factor; JAK-STAT, Janus kinase/signal transducers and activators of transcription.

1. Bringmann A, et al. Prog Retin Eye Res. 2009;28(6):423-451. 2. Wen R, et al. Prog Retin Eye Res. 2012;31(2):136-151. 3. Rhee KD, et al. Proc Natl Acad Sci U S A. 2013;110(47):E4520-E4529. 4. Cayouette M, et al. J Neurosci. 1998:18(22):9282-9293.

Preclinical Data: Ocular Delivery of CNTF Can Significantly Slow Progression of Retinal Degeneration 1-8

Authors	Publication Date	Study Subjects	Key Findings
Cayouette et al.	1998	Mouse	Demonstrated that intraocular adenovirus-mediated gene transfer of CNTF reduces photoreceptor loss in homozygous rds mouse ¹
Peterson et al.	2000	Rat	Showed that, in rat retinas, CNTF-mediated changes in Müller cell function yield a secondary neuroprotective signaling to photoreceptors and suggested that the impact of CNTF on the JAK-STAT pathway influences neuronal survival ²
Liang et al.	2001	Mouse and Rat	Found that intravitreal administration of CNTF enables broad and long-term histological photoreceptor protection in mice and rats for 8.5–9.0 months and 6.0 months, respectively ³
Sieving et al.	2006	Human	Showed improved acuities of 10–15 letters for n=3 of 7 patients who received CNTF delivered via encapsulated cells implanted into the vitreous ⁴
Kassen et al.	2009	Zebrafish	Demonstrated that CNTF has neuroprotective effects on photoreceptors in retinas of adult zebrafish ⁵
Talcott et al.	2011	Human	Showed improved photoreceptor survival vs contralateral eyes which experienced progressive photoreceptor death ^{6,*}
Zhang et al.	2011	Human	Demonstrated CNTF delivery via intraocular encapsulated cell technology led to improved BCVA loss of <15 letters in the high dose group (96.3%) vs low dose (83.3%) and sham (75%) ⁷
Rhee et al.	2013	Mouse	Found that low levels of CNTF intravitreally injected in mouse retinas stimulate Müller glial cells and promote photoreceptor neuroprotection ⁸

^{*}Included n=2 patients with retinitis pigmentosa and n=1 with Usher syndrome type 2.6 CNTF, ciliary neurotrophic factor; JAK-STAT, Janus kinase/signal transducers and activators of transcription.

^{1.} Cayouette M, et al. *J Neurosci.* 1998;18(22):9282-9293. **2.** Peterson WM, et al. *J Neurosci.* 2000;20(11):4081-4090. **3.** Liang FQ, et al. *Mol Ther.* 2001;4(5):461-472. **4.** Sieving PA, et al. *Proc Natl Acad Sci U S A.* 2006;103(10):3896-3901. **5.** Kassen SC, et al. *Exp Eye Res.* 2009;88(6):1051-1064. **6.** Talcott KE, et al. *Invest Ophthalmol Vis Sci.* 2011;52(5):2219-2226. **7.** Zhang K, et al. *Proc Natl Acad Sci U S A.* 2011;108(15): 6241-6245. **8.** Rhee KD, et al. *Proc Natl Acad Sci U S A.* 2013;110(47):E4520-E4529.

Vision Impairments Significantly Impact Daily Life¹⁻⁶

Reduction in reading capability^{3,5}

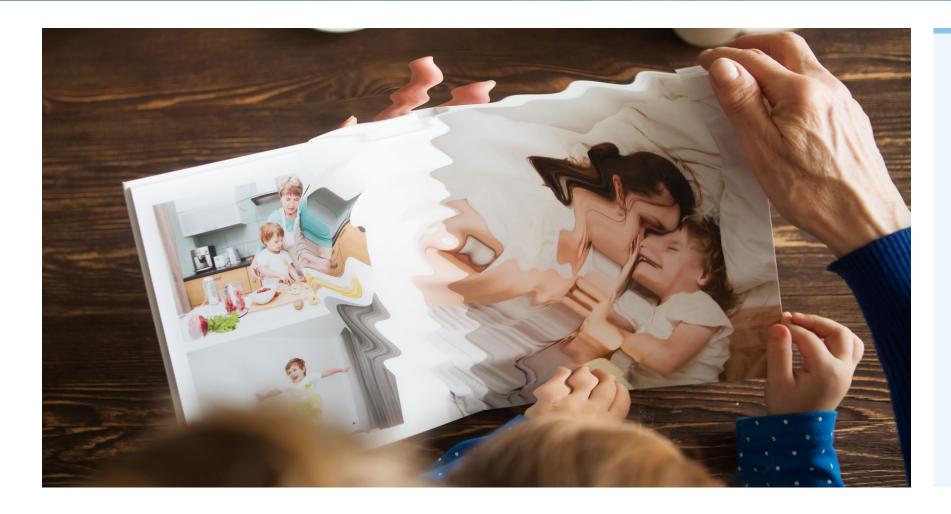
- Decreases by 50 WPM on average for MacTel patients from the healthy average of 190 WPM
- Struggle reading numbers: paying bills, dialing phone numbers, seeing prices correctly when shopping
- Difficulties with daily tasks: reading medication bottles, computer usage, reading and following recipes

I can't read books anymore. I literally pick up a book to read it and I have to move my head around and I go through the first few pages and really bad eye starts burning. I just have to put books down, so I had to give up reading.

- MacTel Patient5

Limitations on driving^{1,2,4,5}

- **Slower reaction** to road hazards (eg, road hazards suddenly appearing)
- Only able to drive short distances/daylight hours due to difficulty navigating roads and reading road signs
- Difficulty judging distance and perceiving straight lines

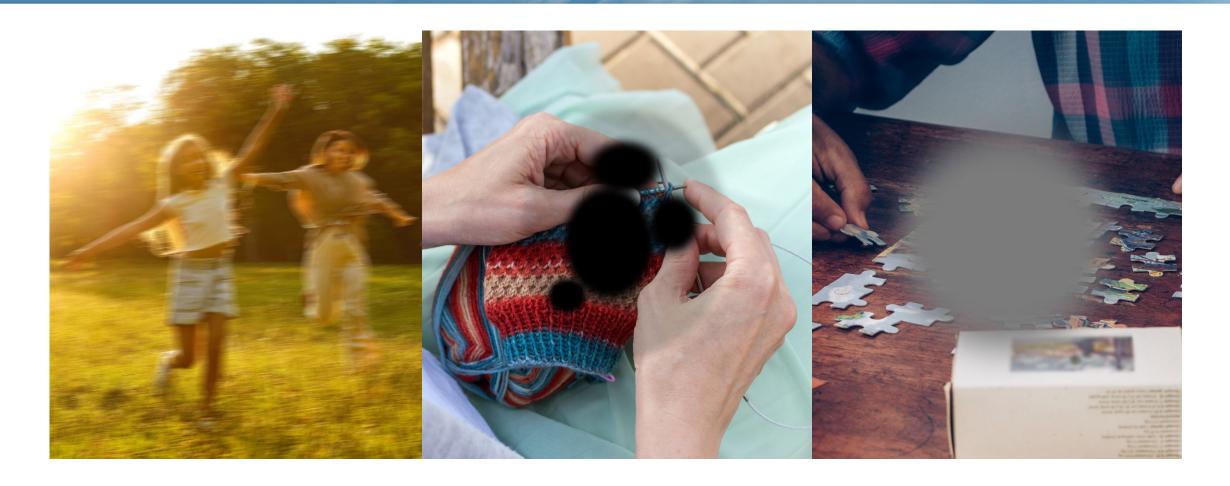

The first symptoms I was having where I knew something was wrong....was with **driving**. Every linear line is bent in my vision...I constantly see other cars in my lane so I can't pass vehicles anymore because I can't discern where the vehicles are at. And if they are white, silver, or grey I can't see them at all.

- MacTel Patient⁵

WPM, words per minute.

1. Heeren TFC, et al. Ophthalmology. 2020;127(11):1539-1548. 2. Lee, et al. AAO. "Driving Restrictions per State." 2023; 3. Finger RP, et al. Invest Ophthalmol Vis Sci. 2009;50(3):1366-137033. 4. Bronstad PM, et al. JAMA Ophthalmol. 2013;131(3):303-309. 5. Neurotech data on file. 6. Charbel Issa P, et al. Doc Ophthalmol. 2009;119(2):133-140.

Distorted Vision With MacTel 2



Patients with nonproliferative MacTel often experience metamorphopsia¹

Present in 83%
 of MacTel eyes
 without neo vascularization

1. Charbel Issa P, et al. Doc Ophthalmol. 2009;119(2):133-140.

Visual Symptoms Have Significant Impact on Daily Life¹

^{1.} Neurotech data on file.

MacTel 2 Affects Productivity Leading to Socioeconomic Burdens¹

MacTel can cause economic burden during prime earning years^{2,3}

Employment disruption and reduced wages^{1,2}

Substantial productivity loss for affected patients

Need to find an accommodating job for their vision symptoms

Fear of potential job loss

Feelings of uncertainty about financial stability

Economic cost due to time spent on in-home care and transportation to appointments

1. Rein DB, et al. Ophthalmology. 2022;129(4):369-378. 2. Neurotech data on file. 3. Heeren TFC, et al. Retina. 2014;34(5):916-919.

Patients Have Significant Emotional and Psychosocial Burdens

On average, patients with MacTel report

24%

lower mental well-being vs unaffected patients^{1,2}

Feelings of vulnerability and isolation³

No longer engaging in activities they enjoy

No longer doing certain tasks independently

No longer having good attention to detail at work

Having to give up hobbies

Strains on personal relationships and family life³

Feeling as a burden on their family or partner

Unable to read a storybook to grandchildren

"The frustration of not being able to read and do the things I used to do, the hobbies, the projects, the little things... that you always just took for granted."

- MacTel Patient3

1. Clemons TE, et al. Invest Ophthalmol. Vis Sci. 2008;49(10):4340-4346. 2. Mangione CM, et al. Arch Ophthalmol. 2001;119(7):1050-1058. 3. Neurotech data on file.

MacTel 2 Key Takeaways

Photoreceptor loss in MacTel leads to functional vision loss^{1,2}

Most MacTel patients develop **ellipsoid zone loss** with a subsequent impact on vision³

BCVA often does not reflect disease burden; patients may develop a scotoma, but visual acuity remains stable^{1,4,5}

MacTel may be misdiagnosed as other retinal diseases, leading to diagnostic delays⁶

There are currently
no approved diseasemodifying treatments
for MacTel, and patients
therefore continue
to decline²

Dysfunction in Müller glial cells and apoptosis leads to vision impairment^{1,7,8}

Ocular delivery of CNTF may significantly slow progression of retinal degeneration^{8,9}

Visual symptoms have a significant **impact on daily life**, including work productivity¹⁰

Patients with MacTel experience significant emotional and psychosocial burdens¹¹⁻¹³

CNTF, ciliary neurotrophic factor; BCVA, best corrected visual acuity.

1. Kedarisetti KC, et al. Clin Ophthalmol. 2022;16:3297-3309. 2. Charbel Issa P, et al. Prog Retin Eye Res. 2013;34:49-77. 3. Peto T, et al. Retina. 2018;38(Suppl 1):S8-S13. 4. Heeren TFC, et al. Invest Ophthalmol Vis Sci. 2017;48:3788-3795. 6. Clemons TE, et al. Ophthalmic Epidemiol. 2010;17(1):66-73. 7. Powner MB, et al. Ophthalmology. 2013;120(11):

2344-2352. **8.** Shen W, et al. *J Neurosci*. 2012;32(45):15715-15727. **9.** Tao W, et al. *Invest Ophthalmol Vis Sci*. 2002;43(10):3292-3298. **10.** Rein DB, et al. *Ophthalmology*. 2022;129(4):369-378. **11.** Clemons TE, et al. *Invest Ophthalmol Vis Sci*. 2008;49(10):4340-4346. **12.** Lamoureux EL, et al. *Invest Ophthalmol Vis Sci*. 2011;52(5):2520-2524. **13.** Neurotech data on file.

Different ophthalmologic imaging findings can be observed across the spectrum of MacTel 2 disease severity^{1,2*}

Proliferative disease Nonproliferative disease (exudative telangiectasia and foveal atrophy)² (subretinal neovascularization)² Occult Loss of retinal Right-angled Retinal **Subretinal** telangiectatic vessels blood vessels pigment clumps neovascularization transparency Slight graying and loss Faint graying and **DFE** depigmentation; of transparency of the Dark pigmented plaque³ mostly normal³ parafoveolar retina³ Dilated and blunted right-SNV, fibrovascular proliferation angle venules; perifoveal Mild telangiectatic and in the parafoveal area^{2,4,5} Occult vascular Ischemia and marked late telangiectasia³ microaneurysmal changes FA abnormalities are leakage in the temporal adjacent to the fovea with barely detectable⁴ perifovea³ mild late leakage³ Subtle **hyperreflective Hyporeflective inner** Central EZ collapse and Retinal hyperreflective SNV, foveal contour OCT middle retinal layer^{3,6} retinal cavities⁶ photoreceptor loss³ deposits and cysts³ irregularities^{4,6}

^{*}MacTel five-stage classification first defined by Gass and Blodi in 1993⁵; in 2022, Chew et al. introduced a 7-stage classification system using OCT HR, pigment, and EZ loss as an alternative to the Gass-Blodi five-stage system ⁷

DFE, dilated fundus exam; EZ, ellipsoid zone; FA, fluorescein angiography, OCT, optical coherence tomography; SNV, subretinal neovascularization. Images provided by Dr. Thomas Aaberg.

1. Charbel Issa P, et al. *Prog Retin Eye Res.* 2013;34:49-77. **2.** Kedarisetti KC, et al. *Clin Ophthalmol.* 2022;16:3297-3309. **3.** Chin EK, et al. *Invest Ophthalmol Vis Sci.* 2013;54(7):4459-4470. **4.** Yannuzzi, et al. *Arch Ophthalmol.* 2006;124(4):450-460. **5.** Gass JD, Blodi BA. *Ophthalmology.* 1993;100(10):1536-1546. **6.** Venkatesh R, et al. *Int J Retina Vitreous.* 2022;8(1):26. **7.** Chew EY, et al. *Ophthalmol Sci.* 2023;3(2):100261.