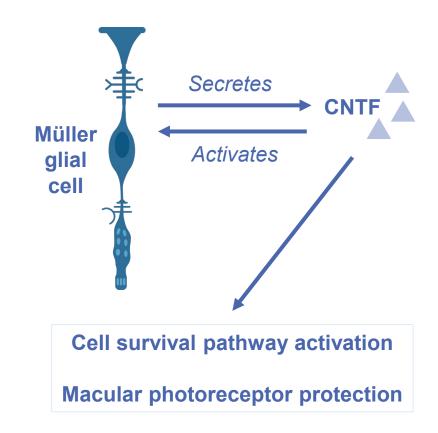
Secretion of Ciliary Neurotrophic Factor by NT-501 Encapsulated Cell Technology in Patients With Retinal Degenerative Disorders

Jiong Yan,¹ Thomas A. Albini,² Konrad Kauper,³ Lisa Orecchio,³ Arne Nystuen,³ Alice Lee,³ Eugene Gonzalez-Lopez,³ Jacque L. Duncan,⁴ Jay M. Stewart,⁴ Thomas Aaberg, Jr^{3,5}

¹Emory University School of Medicine, Atlanta, GA; ²Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL; ³Neurotech Pharmaceuticals, Inc., Cumberland, RI; ⁴University of California San Francisco, San Francisco, CA; ⁵Foundation for Vision Research, Grand Rapids, MI

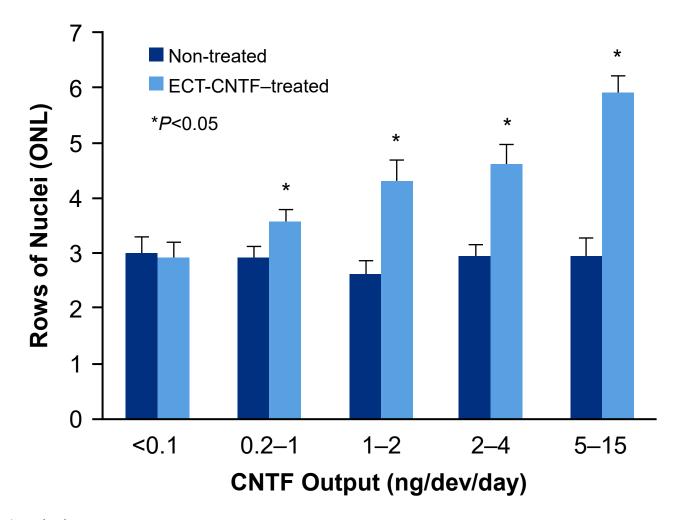
Financial Disclosures


- Jiong Yan has received consulting fees from Spark Therapeutics and Neurotech Pharmaceuticals and has received research grants from Hart Foundation, Glenn Foundation, and Dobbs Foundation
- This study was funded by Neurotech Pharmaceuticals, Inc.

Retinal Degenerative Diseases

- Retinal degenerative diseases are a group of chronic conditions that are a significant cause of vision loss worldwide and impact quality of life^{1,2}
- In chronic retinal degenerative diseases, damage to the retina leads to vision loss^{1,2}
- Progressive death of photoreceptors and retinal pigment epithelium cells are hallmarks of these diseases^{1,2}
- Despite the impact on vision loss, few effective treatments are available for chronic neurodegenerative conditions of the retina, such as macular telangiectasia type 2³

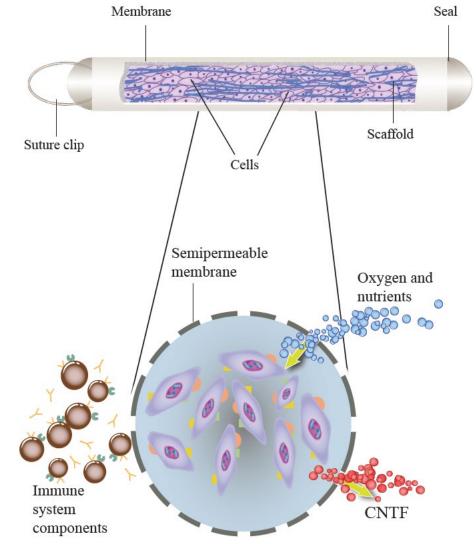
CNTF Protects and Preserves Photoreceptors


- Under pathological conditions, Müller glial cells can protect photoreceptors from cell death through the production of neurotrophic factors, including CNTF¹
- Neuroprotective factors, including CNTF, provide structural and neuroprotective support by activating cell survival pathways¹⁻³
- ECT enables continual release of CNTF to the retina over long periods of time, without triggering an immune response⁴⁻⁶

^{1.} Bringmann A, et al. *Prog Retin Eye Res.* 2006;25:397-424. 2. Rhee KD, et al. *Proc Natl Acad Sci U S A.* 2013;110:E4520-E4529. 3. Cayouette M, et al. *J Neurosci.* 1998;18:9282-9293. 4. Wen R, et al. *Prog Retin Eye Res.* 2012;31:136-151. 5. Tao W. *Expert Opin Biol Ther.* 2006;6:717-726. 6. Kauper K, et al. *Invest Ophthalmol Vis Sci.* 2023;64:3680.

CNTF Provided Photoreceptor Protection in a Preclinical Study¹

- In the rapid retinal degeneration rcd-1 canine model, ECT devices were intravitreally implanted into dogs at 7 weeks of age
- Doses greater than 0.2 ng/day were seen to provide photoreceptor protection, with greater protection seen at higher doses



CNTF, ciliary neurotrophic factor; dev, device; ECT, encapsulated cell therapy; ng, nanogram, ONL, outer nuclear layer;.

1. Tao W, et al. *Invest Ophthalmol Vis Sci.* 2002;43:3292-3298. Figure reproduced with permission of Association for Research in Vision & Ophthalmology, from Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa, Tao W, et al, 43(10), 2002; permission conveyed through Copyright Clearance Center, Inc.

Encapsulated Cell Therapy Enables Long-term CNTF Delivery

- Revakinagene taroretcel-lwey (formerly known as NT-501) is a first-in-class ECT^{1,2}
 - Houses NTC-201-6A cells¹
 - Allogeneic retinal pigment epithelial cells expressing recombinant human CNTF¹
 - Surgically implanted into the vitreous cavity and stably anchored to the sclera¹
 - Developed to release long-term sustained levels of CNTF³
 - Revakinagene taroretcel-lwey was approved by the FDA for the treatment of MacTel on March 5, 2025¹

CNTF, ciliary neurotrophic factor; ECT, encapsulated cell therapy; FDA, Food and Drug Administration; MacTel, macular telangiectasia type 2.

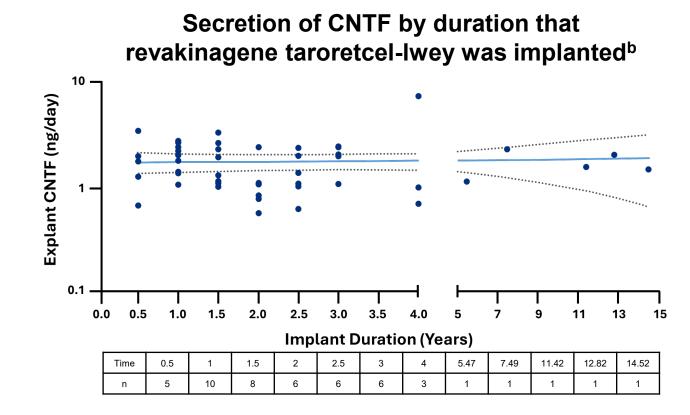
1. ENCELTO [package insert]. Cumberland, RI: Neurotech Pharmaceuticals, Inc; March 2025. 2. Lally D, Eliott D. Phase 2 safety study of bilateral ciliary neurotrophic factor-producing revakinagene taroretcel in participants with macular telangiectasia type 2 [abstract]. Presented at: Annual EURETINA; September 19-22, 2024; Barcelona, Spain. 3. Kauper K, et al. *Invest Ophthalmol Vis Sci.* 2023;64:3680.

Assessing the Long-term Durability of Revakinagene Taroretcel-Iwey

• **Objective:** To examine drug-release levels and long-term function of explanted revakinagene taroretcel-lwey following implant durations of 0.5 to 14.5 years in people with retinal degenerative disease

Participants were enrolled in the following trials:

- Retinitis pigmentosa^a: Phase 1 and three Phase 2 trials
- Atrophic age-related macular degeneration^b:
 Phase 2 trial
- MacTel^c: Phase 3 trial

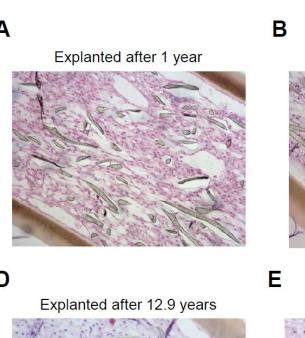


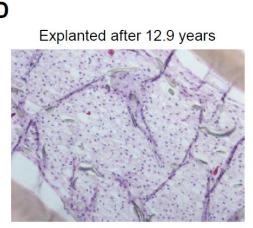
Analysis of Long-term Durability of CNTF Release From Revakinagene Taroretcel-Iwey

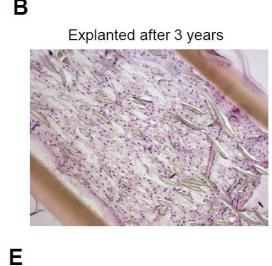
- Revakinagene taroretcel-lwey explants were collected and assessed for:
 - Rate and potency of CNTF produced^a
 - Histology of the encapsulated cells producing CNTF^b
 - Samples were scored by three independent analysts on cell morphology and cell density
- Serum from select patients were evaluated for:
 - Detectable levels of CNTF
 - Antibodies against CNTF
 - Antibodies against the NTC-201-6A cell line

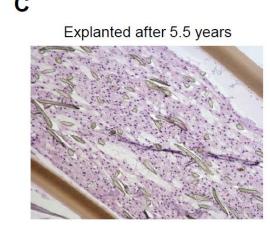

Long-term CNTF Release^a After Revakinagene Taroretcel-Iwey Implantation

- An analysis of 49 revakinagene taroretcel-lwey explants from implant durations of up to 14.5 years demonstrated consistent release of CNTF
- The geometric mean of protein release was 1.6 ng/day (95% CI, 1.4–1.8)


CNTF From Revakinagene Taroretcel-Iwey Explants Compared With Reference


- Explant release of CNTF was tested for bioactivity relative to a reference protein using a modification of the CNTF bioassay
- Specific activity of the samples averaged 1.26 activity units over that of the reference protein, indicating bioactivity
- Samples were not significantly different from each other over the duration of the implant period




Revakinagene Taroretcel-Iwey Explant Histology Over Time

- Cell morphology from 48^a revakinagene taroretcel-lwey explants was similar across explant times, up to 14.5 years
- Cell density from explants was also similar
 - This was true even for the explants with the longest implant duration

Serum Analysis From Explanted Patients

- An analysis of serum samples^a demonstrated:
 - No detectable levels of CNTF
 - No antibody levels against CNTF over participants' baseline level
 - No antibody levels against the NTC-201-6A cell line over participants' baseline level

Conclusions

- This study found that revakinagene taroretcel-lwey released consistent levels of bioactive CNTF at time points as long as 14.5 years
- Histological evaluation determined that cells from revakinagene taroretcel-lwey explants that had been implanted for up to 14.5 years were similar in cell density and morphology
- The CNTF output (1.6 ng/day) has been shown to be effective in slowing photoreceptor loss in the rapid retinal degeneration rcd-1 canine model¹
- These findings suggest that revakinagene taroretcel-lwey has the potential to be a long-term therapeutic option for chronic retinal degenerative diseases

Acknowledgements

- This study was funded by Neurotech Pharmaceuticals
- These data were presented in part at the Association for Research in Vision and Ophthalmology 2023 Annual Meeting; April 23–27, 2023; New Orleans, LA, and Retina World Congress 2025; May 8–11, 2025; Fort Lauderdale, FL
- Writing and editorial assistance was provided by Elizabeth McSpiritt, MD, MPH, and Christina Mulvihill, PharmD, of Peloton Advantage, LLC, an OPEN Health company, and was funded by Neurotech